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The effects of a large-scale shear on the energy spectrum of a passively advected
scalar field are investigated. The shear is superimposed on a turbulent isotropic flow,
yielding an Obukhov–Corrsin k−5/3 scalar spectrum at small scales. Shear effects
appear at large scales, where a different, anisotropic behaviour is observed. The scalar
spectrum is shown to behave as k−4/3 for a shear fixed in intensity and direction. For
other types of shear characteristics, the slope is generally intermediate between the
−5/3 Obukhov–Corrsin and the −1 Batchelor values. The physical mechanisms at the
origin of this behaviour are illustrated in terms of the motion of Lagrangian particles.
They provide an explanation for the scalar spectra that are shallow and dependent
on the experimental conditions in shear flows at moderate Reynolds numbers.

1. Introduction
Two major regimes are known for a passive scalar field transported by a turbulent

flow. The first, known as inertial–convective, refers to the range of scales where the
direct effects of the fluid viscosity and the scalar diffusivity are both negligible. The
predicted behaviour of the spectrum Eθ (k) of the scalar field θ is (Obukhov 1949;
Corrsin 1951):

Eθ (k) = Cε−1/3εθk
−5/3. (1.1)

Here, k denotes the wavenumber, C is a non-dimensional constant, and ε and εθ are
the average dissipation rates of the kinetic energy and the scalar variance, respectively.
The second regime, dubbed viscous–convective, is at scales smaller than the first and
holds for weakly diffusive (alternatively high Schmidt or Prandtl number) scalars.
The velocity field is now smoothed out by the molecular viscosity, linearizing the
dependence of the velocity increments on the separation between the two points
where the increment is taken. This yields the Batchelor behaviour (Batchelor 1959):

Eθ (k) ∝ k−1. (1.2)

Scalar spectra have been measured in a number of laboratory experiments. None of
these pure power laws with the exponents anticipated above are routinely observed.
The existence of a k−1 spectrum in the viscous–convective subrange has been
questioned based on high Reynolds and Schmidt number experiments (Miller &
Dimotakis 1996; Warhaft 2000; Yeung, Xu & Sreenivasan 2002). At larger scales,
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scalar spectra do behave compatibly with a power law, but their slope is often
found to deviate from the Obukhov–Corrsin −5/3 value. Deviations are particularly
important in turbulent shear flows, where the observations indicate that the spectra
strongly depend on the Reynolds number Re (Mestayer 1982; Sreenivasan 1991,
1996; Miller & Dimotakis 1996; Warhaft 2000) and on the detailed set-up of the
advecting turbulent flow. The prediction (1.1) is, in particular, recovered for very large
Reynolds numbers only (Reλ > 2000). Deviations are also observed when the velocity
field displays a convincing k−5/3 spectrum (see, e.g., Sreenivasan 1996; Villermaux,
Innocenti & Duplat 2001).

Our aim here is to investigate the physical origin of the behaviour experimentally
observed in shear flows, briefly recalled in § 2. We specifically consider a model where
the velocity is decomposed into a linear shear, superimposed onto a turbulent flow
assumed to obey Kolmogorov’s scaling. As in thermal convection and Navier–Stokes
turbulence (see e.g. Siggia 1994; Casciola 2002), the presence of the shear introduces
a new length scale rc. The scalar spectrum crosses from the classical behaviour (1.1)
at scales r � rc to a different anisotropic behaviour for r � rc. As discussed in § 3,

Lagrangian dimensional arguments allow the scaling of the scalar spectrum in the new
shear-regime to be predicted for a variety of shear properties. A −4/3 scaling is, in
particular, found for a shear fixed in intensity and direction. A test of the Lagrangian
dimensional arguments is provided in § 4, where we consider a simpler turbulent
flow with a short correlation time. The assumption is unphysical and the Lagrangian
arguments of § 3 yield quantitatively different predictions; the point is however that
these predictions can be stringently tested against the exact solution for the scalar
spectrum which can be obtained in this special case. The final Section is devoted to
discussions and conclusions. The Appendix contains technical material used in § 4.

2. Scalar spectra in experiments
Turbulent flows can be divided into two broad categories: shear flows (jets, wakes,

and boundary layers) and flows where the effects of large-scale shears are tamed (e.g.
grid-generated turbulence). The latter are the laboratory flows providing the closest
physical realization of the homogeneous and isotropic turbulence dealt with by most
theoretical fluid dynamics.

Various possible ways to inject scalar fields in turbulent flows have been employed.
In grid turbulence, temperature fluctuations are generated by heating either the grid
itself or small wires located thereafter. In shear flows, one possibility is to weakly
heat the jet or the wall of the boundary layer. Alternatively, a colorant dye can be
injected past the flow source, at a scale possibly different from that of the stirring
source. Temperature time series are taken by a thermometer in a fixed location and,
as customary in most fluid dynamics experiments, time intervals are converted to
space distances by the Taylor hypothesis. Scalar spectra or, equivalently, second-
order structure functions, are thus measured. The use of fluorescent dyes offers the
possibility to extract cuts – usually two-dimensional – of the scalar field from the
intensity field. Simultaneous velocity measurements are usually taken by anemometers.
The reader interested in a detailed discussion of the experimental techniques is referred
to Sreenivasan (1996), Warhaft (2000), Villermaux et al. (2001).

The observations collected in the literature might be summarized as follows. In
grid-generated turbulence, the prediction (1.1) is well-verified. This also holds at
moderate Reλ, when there is a tiny range of scales where the spectrum of the velocity
field displays a clean −5/3 slope. Some results obtained by directly heating the grid
used to generate the turbulence have been criticised (Warhaft 2000) on account of



Shear effects on passive scalar spectra 101

possible correlations between the temperature and the velocity. It seems, nevertheless,
a well-established fact (see Jayesh, Tong & Warhaft 1994; Mydlarski & Warhaft 1998;
Warhaft 2000) that the slope of the scalar spectrum increases with Reλ from values �
−1.5 to −5/3, reached at Reynolds numbers Reλ � 200. Small deviations observed at
lower Reλ are confidently ascribed to finite-Re effects.

The situation in turbulent shear flows is more intricate. Experiments with different
Reλ but similar non-dimensional shear rates have been collected and compared
by Sreenivasan (1996). The main observation is that the slopes of the passive
scalar spectra display a strong dependence on the turbulent intensity. Their slope is
approximately 1.3 at low Reλ and attains the predicted −5/3 value at Reλ � 2000 only.
Strong anisotropic effects are also observed for the velocity energy spectrum. Indeed,
its longitudinal component reaches the expected −5/3 behaviour at moderate
Reλ (≈50). Conversely, its transverse component behaves more like the scalar field,
with a slope continuously increasing with Reλ and saturating to −5/3 only for Reλ �
3000. The experiments by Villermaux et al. (2001) report even more severe deviations
from (1.1), with a slope close to the Batchelor unit value, in spite of the −5/3 spectrum
observed for the velocity field. The scalar injection scale, although still lying in
the inertial range of scales, was smaller than the turbulence forcing scale in that case.

3. Shear effects on Lagrangian dynamics
The experimental observations presented in § 2 naturally lead to the surmise that

the deviations observed in the scalar spectra have, among other possibles causes, their
origin in the presence of a sustained large-scale shear. The interplay between diffusion
and shear is a classical problem first examined by Levèque (1928) for heat transport
across boundary layers. Qualitatively, the flow stretches the distances between particles
along the shear and sharpens the scalar gradient perpendicular to it, therefore altering
the usual diffusion law.

In order to quantitatively assess the impact of shear on scalar spectra, we introduce
the following simple model for the velocity field v(r, t):

v(r, t) = σy x̂ + u(r, t). (3.1)

The flow is thus the superposition of an average linear shear of intensity σ

directed along the x-direction and a turbulent fluctuating field u, assumed to obey
Kolmogorov’s scaling, for the sake of simplicity. The spectrum of the velocity field
obeys, in particular, the classical k−5/3 law.

A passive scalar field, θ(r, t), transported by the above flow is governed by the
standard advection–diffusion equation:

∂tθ + σy∂xθ + u · ∇θ = κ�θ + f, (3.2)

where κ is the molecular diffusivity and f is an external source of scalar fluctuations.
The source is needed to maintain the system in a statistically steady state and we
shall suppose that the forcing has a characteristic length Lf .

The transport equation (3.2) is equivalently recast in terms of the Lagrangian
trajectories ρ(t) of tracer particles. They obey the stochastic differential equation

dρ = v(ρ, t) dt +
√

2κ dW , (3.3)

where W is an isotropic Brownian motion and v is given by (3.1). The equation for
the scalar field along the trajectories is the ordinary differential equation dθ/dt = f ,
easily integrated. The scalar second-order correlation function of the scalar field is
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then expressed as (see, e.g., Falkovich, Gawȩdzki & Vergassola 2001):

C2(r, t) = 〈θ (r, t)θ(0, t)〉 =

∫ t

−∞
ds

∫
dR p(R, s|r, t) χ(R). (3.4)

Here, R is the separation between two tracer particles and p(R, s|r, t) is the propa-
gator, i.e. the probability, averaged over the realizations of the velocity ensemble and
of the Brownian noise, that a pair of particles is found separated by R at time s,
conditional on its separation r at time t . The function χ(R) having its support at
scales R � Lf , the integral (3.4) is roughly equal to χ(0)T (r, Lf ), where T (r, Lf ) is
the residence time at distances � Lf for a pair of particles initially separated by a
distance r . Analogously, the second-order structure function S2(r) = 2[C2(0)−C2(r)] ∝
T (0, Lf ) − T (r, Lf ). The incompressibility of the flow ensures that the scaling of the
latter quantity can be estimated as the time for two particles, initially coinciding, to
reach a separation r .

The problem of determining the scaling behaviour of scalar spectra is thus reduced
to the study of the evolution of the separation between a pair of particles.

For the case without shear, σ = 0, classical dimensional arguments give the
Richardson law: 〈R2(t)〉 ∼ t3, which translates into a 2/3 scaling exponent for
S2(r) and the ensuing Obukhov–Corrsin −5/3 slope for the scalar spectrum.

Let us now consider the case with shear, σ �= 0. The components of the separation
between two fluid particles obey the equations of motion:

Ṙx = σRy + δux(R, t), (3.5)

Ṙ⊥ = δu⊥(R, t), (3.6)

where the dot indicates the time-derivative, δu is the velocity difference between the
two particles and Ṙ⊥ indicates the components of the velocity orthogonal to the
shear. At small enough times, the turbulent component, which scales with exponent
1/3, dominates over the linear shear and Richardson’s behaviour holds. The crossover
to a different anisotropic behaviour occurs at rc � σ −3/2. Those are the separations at
which the shear and the turbulent components become comparable. The time required
for two particles initially coinciding to reach those scales behaves as tc ∝ σ −1. For
t � tc, the form of the Lagrangian equations naturally suggests that the parallel and
the transverse components scale differently with time:〈

R2
x

〉
≈ 〈R2〉 ∝ t2α,

〈
R2

⊥
〉

∼ t2β. (3.7)

Inserting this ansatz into (3.5) and (3.6), neglecting the δux term in (3.5) and using the
Kolmogorov scaling δu⊥(R, t) ∝ R1/3 � tα/3, we obtain the relations α − 1 = β and
β − 1 = α/3. We thus end up with the predictions α = 3, β = 2 for the Lagrangian
separations, which give

C2(r) ∝ r1/3, E(k) ∝ k−4/3, (3.8)

for the correlations of the scalar field, by using the arguments following (3.4).
It is worth emphasizing that the scalar statistics is sensitive to the shear

characteristics, as expected for any passive transport. For example, if the direction
of the shear were to rotate rapidly, isotropy would be recovered and the stretching
of the separations among the particles would be dominated by the linear shear
component, leading to an exponential-in-time separation and a k−1 behaviour. The
physics is the same as in the Batchelor regime, but the behaviour now holds at large
scales. The rapidity of the rotation should be gauged with respect to the Lagrangian
turnover time: if τφ denotes the typical time of rotation, the fixed limit (3.1) holds for
scales r � τ

3/2
φ and the rapidly rotating asymptotics in the opposite limit. For
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the fluctuations of the shear intensity, let us similarly denote by τσ its correlation time.
The intensity is effectively fixed in time, as in (3.1), for scales r � τ 3/2

σ . In the opposite
limit, the intensity might be taken as a random process with a short correlation time
〈σ (t)σ (t ′)〉 = σ 2δ(t − t ′). Inserting the ansatz (3.7) into (3.5) leads now to the relation
α − 1 = −1/2 + β , giving a slope −13/9 for the scalar spectrum. The geometry of the
shear and the ratio between its timescale and the turbulent turnover times are thus
seen to affect the properties of a passively transported field. The point of interest
in interpreting the experimental data is that the exponents of the spectra are in all
cases smaller than −5/3, implying that the presence of a shear generally induces a
crossover to a shallower spectrum at the large scales.

4. A solvable case
The aim of this Section is to test the dimensional arguments presented in the

previous Section by investigating the simpler case of a turbulent flow u belonging
to the Kraichnan ensemble (Kraichnan 1968). The rationale is as follows. The
short correlation time of the velocity is unphysical and the Lagrangian predictions
(3.8) are thereby modified (the scaling −4/3 of the scalar spectrum becoming, for
example, −11/9). Yet, the point is that one can compare those predictions to the
solution of the exact equation for the scalar spectrum. The advantage over a direct
numerical simulation of the more realistic flows in § 3 is that the range of scales
available here is much more extended and the comparison is therefore quantitatively
more stringent, albeit less direct.

The field u in (3.1) is taken now as an incompressible, statistically isotropic and
homogeneous Gaussian field of zero mean and correlation function:

〈[ui(r, t) − ui(0, t)][uj (r, 0) − uj (0, 0)]〉 = δ(t)

{
D rξ

[
(1 + ξ )δij − ξ

rirj

r2

]}
. (4.1)

Here, we specialize to the two-dimensional case for the sake of simplicity: this
choice has no qualitative consequences on the results. The parameter D measures
the turbulent intensity and the velocity field is assumed to be scale-invariant with
roughness exponent ξ ∈ [0, 2]. The presence of an ultraviolet viscous cutoff mimicking
the Kolmogorov scale could be considered, but it will not be needed here.

Using standard methods of Gaussian integration by parts (see Falkovich et al.
2001), we can adapt the Lagrangian arguments of the previous section to the case of
a Kraichnan flow. The Lagrangian separation law for the isotropic case is 〈R2(t)〉 ∝
t2/(2−ξ ). Note that the Richardson scaling is obtained for ξ = 4/3, differing from the
2/3 of real turbulent flows due to the δ-correlation in time of the velocity field. For
the anisotropic case of a shear fixed in intensity and direction, the relations between the
exponents α and β stemming from (3.5) and (3.6) are now α −1 =β and 2β −1 = 2αξ .
Solving these relations gives the following behaviours of the Lagrangian separations
and the scalar spectra:〈

R2
x

〉
≈ 〈R2〉 ∝ t6/(2−ξ ),

〈
R2

y

〉
∼ t2(1+ξ )/(2−ξ ), E(k) ∝ k−(5−ξ )/3. (4.2)

For ξ = 4/3, (4.2) gives a −11/9 exponent for the scaling of the scalar spectrum.
The advantage of Kraichnan’s flows is that the behaviour of the second-order

correlation function C2(r) at the stationary state can be determined exactly and
used to test the previous dimensional arguments. In the shear-free case, σ = 0,
the problem is isotropic and the expression for C2(r) is well-known analytically.
The inertial-range scaling behaviour for the second-order structure function
S2(r) = {χ(0)/[2 − ξ )D]}r2−ξ , where χ(0) is the scalar variance injection rate. The
exponent 2 − ξ is in agreement with the Lagrangian dimensional estimate.
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Figure 1. Scalar spectra in the x-direction, Eθ (k, 0), obtained by fixing D = 0.05 and varying
σ (from top to bottom, σ = 0, 0.0004, 0.0036, 0.025). In the numerical computations Lbox

and Lf have been fixed to 1283 and 105, respectively – see the Appendix for the definition
of the parameters – and the scaling exponent of the velocity ξ = 4/3. The inset at the top
right shows the rescaled spectra Eθ (krc, 0) vs. krc . At large wavenumbers, the k−5/3 spectrum
is recovered, while at small k the power law k−11/9, predicted by Lagrangian dimensional
arguments, appears. The inset at the bottom left shows the compensated spectra Eθ (k, 0)k11/9

obtained by fixing σ = 0.025 and varying Lf = 104, 105, 106, 107. The number of harmonics
�∗, the box size Lbox and the number of grid points have been varied accordingly. Note that
the transition region to the asymptotic slope −11/9 is quite broad.

In the presence of shear, the equation for the second-order correlation function is
still closed, but the problem is not isotropic anymore. Following the same procedure
as in the shear-free case (Kraichnan 1968), one obtains

∂tC2 + σ (r sin φ cos φ ∂r − sin2φ ∂φ)C2

=
1

r
∂r (Dr1+ξ + 2κr)∂rC2 +

1

r2
[(1 + ξ )Drξ + 2κ]∂2

φC2 + χ(r), (4.3)

where r = (r, φ) denotes the relative distance between the two points. The forcing
is taken to be Gaussian, statistically homogeneous and isotropic, with zero mean
and correlation function 〈f (r, t)f (0, 0)〉 = δ(t)χ(r). In the simulations, the correlation
function of the forcing is taken as χ(r) = exp(−r2/2L2

f ). Contrary to the δ-correlation
of the velocity, the previous hypotheses on the forcing are not restrictive and might
be easily relaxed. The anisotropy induced by the shear means that C2 will depend
both on r and on the angle φ between r and the x-axis. The steady-state solution
of (4.3) cannot be obtained analytically anymore and we have to resort to numerical
methods (see the Appendix for details).

The existence of a crossover scale, rc, separating the scales dominated by the
turbulence and those affected by the shear, is easily recognized by a direct inspection
of (4.3). A simple balance of the shear and the eddy-diffusivity terms in (4.3) gives
rc ∼ (D/σ )1/(2−ξ ). The crossover is evident in figure 1, where the scalar spectrum for
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Figure 2. (a) The scalar second-order structure function measured in the x-direction, S2(r, 0),
fixing σ and varying Lf (as in the bottom inset of figure 1). The inset shows the local slopes.
Note that the approach to the asymptotic scaling r0.22 is even slower than in the spectra.
(b) The scalar second-order structure function measured at different angles, S2(r, φ), for the
case σ = 0.025 and Lf = 107. The statistics becomes more and more anisotropic as larger
scales are considered. A similar behaviour is observed for the spectra (not shown).

ξ = 4/3 in a wide span of scales is reported. The results are in agreement with the
Lagrangian predictions (4.2), with Eθ (k) ∼ k−5/3, for krc � 1, and Eθ (k) ∼ k−11/9

asymptotically reached at the large scales. Moreover, as shown in the top right inset,
the spectra obtained with different shear rates all collapse by rescaling the wave-
numbers krc.

The corresponding behaviour in physical space for the second-order structure
function is shown in figure 2(a). Two regimes are again clearly visible. A point to
be noted in the inset is that the convergence to the asymptotic slope, S2(r) ∼ r2/9, is
even slower than in k-space. The behaviour of the second-order structure function for
different orientations is shown in figure 2(b). As expected in a range of scales affected
by the shear, the anisotropy is strong and the crossover between the two previous
regimes depends on the angle of measurement. It would be very informative to have
similar measurements of the anisotropy in experimental conditions.

Note, as an aside, that an asymptotic expansion valid for small angles can be found
analytically. Indeed, the correlation function C2 can be expressed as

C2(rx, ry) = (D/σ )−1/3r (2−ξ )/3
x f

[
ry/

(
Dr1+ξ

x /σ
)1/3]

, (4.4)

where the angular part f obeys the equation

f ′′(w) +
w2

3
f ′(w) − w

(1 + ξ )
f (w) = − χ

σ (1 + ξ )
. (4.5)

For small angles, i.e. w � 1, the operator appearing in (4.3) reduces to σry∂rx
−

D(1 + ξ )rξ
x ∂2

ry
and it is easy to check that the solution to (4.5) has the form (4.4) with

the function f behaving as

f (w) = −1 − χw2

2σ (1 + ξ )
− w3

6(1 + ξ )
+ O(w4).

An even closer contact to the Lagrangian arguments (4.2) is made by directly
simulating the equations of motion for the tracer particles. The method used for the
simulations is the same as in Frisch, Mazzino & Vergassola (1998). Figure 3 presents
the evolution of the particle separation for ξ = 4/3. As long as 〈R2(t)〉 < r2

c ∼
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Figure 3. The curves of the Lagrangian separations as a function of time, for a Kraichnan
flow with exponent ξ = 4/3. At small times, 〈R2

x(t)〉 = 〈R2
y(t)〉 = 〈R2(t)〉/2 ∼ t3, as expected

according to the Richardson law. At large times, 〈R2(t)〉 ≈ 〈R2
x(t)〉 ∼ t9 and 〈R2

y(t)〉 ∼ t7, in
agreement with (4.2). The inset displays the local slopes as a function of time. Note the wide
crossover region between the two regimes. The numerical integrations of (3.5) and (3.6) have
been performed following the point-splitting scheme described in Frisch et al. (1998), i.e. with
molecular diffusivity κ = 0 and taking the initial separation small but finite.

(D/σ )2/(2−ξ ), the Richardson prediction is recovered and the anisotropy induced by the
shear is negligible. As the separation becomes larger compared to rc, the trajectories
are more affected by the shear and 〈R2〉 ≈ 〈R2

x〉 � 〈R2
y〉. In this range of scales, 〈R2

x〉
and 〈R2

y〉 grow with two different power laws and the local slopes in the inset of figure 3
are found to be in agreement with (4.2). The predictions (4.2) and the numerical sim-
ulations are found to be in agreement for values of ξ �= 4/3 as well (data not shown).

Note that the Lagrangian numerics shows a wide crossover region between the two
different regimes (see figure 3). That is the reason for the very slow convergence of the
scalar structure functions and spectra to their asymptotic slopes. In general, detecting
the transition between the inertial–convective and the shear regimes demands a very
broad range of accessible scales.

We finally consider the case where the shear is random. If its direction is fixed and
the time scale of its intensity is short, the resulting exponent of the scalar spectrum is
−2+ ξ/2. If both the direction and the intensity of the shear rapidly fluctuate in time,
i.e. the shear is a Kraichnan flow with ξ = 2, isotropy is recovered and the scalar
correlation function in the stationary state obeys (1/r)∂r (σr3 + Dr1+ξ + 2κr)∂rC2 =
− χ(r). The equation is easily solved analytically and the ensuing slopes of the scalar
spectra are −3 + ξ at small scales (large wavenumbers) and −1 at large scales (small
wavenumbers).

5. Conclusions
The results presented here illustrate the presence of a new shear regime for a

passive scalar transported in turbulent shearflows. The scale of crossover between the
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classical Obukhov–Corrsin range and the larger scales, where the effects of the shear
are felt, is proportional to the ratio between the turbulent and the shear intensities.
The range of scales where the shear regime is observed then becomes parametrically
large on increasing the shear rate. In experiments where the latter is fixed, increasing
the turbulence intensity has the double effect of decreasing the Kolmogorov scale and
increasing the crossover length rc. The Obukhov–Corrsin scaling is therefore observed
over a broader and broader range of scales. When rc is much larger than the integral
scale L of the scalar, the picture at scales � L becomes essentially shear free. For
rc � L, the presence of the shear range is still relevant due to the crossover effects
which induce a scalar spectrum shallower than −5/3 and anisotropic. Those effects
disappear quite slowly with the Reynolds number due to the broad span of scales
required for the crossover. Furthermore, we have shown that the scalar spectrum
in the shear region is sensitive to the geometry and the fluctuations of the shear.
Experiments with different set-ups, where the shear components have drastically
differing properties, might then yield different scalings at asymptotically large scales.
All are shallower than −5/3, though, and therefore inducing crossover effects that
tend to flatten out the scalar spectrum. In those conditions where shear fluctuations
in intensity and direction are controlled, we specifically predict the existence of a
k−4/3 asymptotic regime. This picture seems to account for the major points in the
experimental observations presented in § 2.

Two issues for future investigation are the following. Theoretically, it is quite likely
that the shear will affect the scalar higher-order statistics; the resulting behaviours
remain to be clarified. Experimentally, it would be of interest to have a set-up where
the Reynolds number is kept fixed and the shear rate is increased, in well-controlled
conditions, so as to enlarge the shear regime and quantitatively analyse its properties.

The authors acknowledge the hospitality of the Erwin Schrödinger Institute in
Vienna. This work has been partially supported by the EU under the contract “Non-
Ideal Turbulence” HPRN-CT-2000-00162 and by Cofin 2001 (prot. 2001023848).

Appendix. Equations for the correlation function and numerical computation
The anisotropy introduced by the shear can be handled by using polar coordinates,

which allow the correlation function to be decomposed as:

C2(r, t) = C2(r, φ, t) = F0(r, t) +

∞∑
�=1

F�(r, t) cos(2�φ) +

∞∑
�=1

G�(r, t) sin(2�φ). (A 1)

Here, � labels the order of the harmonics. Note that only even harmonics are present
for symmetry reasons. Substituting (A 1) into (4.3), one obtains the following set of
1+1 dimensional partial differential equations:

∂tF� + σ
r

4
[∂rG�+1 − ∂rG�−1] +

σ

2
[(� + 1)G�+1 − 2�G� + (� − 1)G�−1]

=
1

r
∂r [2κr + Dr1+ξ ]∂rF� − [2κ + (1 + ξ )Drξ ]

4�2

r2
F� + δ�,0χ, (A 2)

∂tG� − σ
r

4
[∂rF�+1 − (1 + δ�,1)∂rF�−1] − σ

2
[(� + 1)F�+1 − 2�F� + (� − 1)F�−1]

=
1

r
∂r [2κr + Dr1+ξ ]∂rG� − [2κ + (1 + ξ )Drξ ]

4�2

r2
G�. (A 3)

Note that the coupling among the harmonics is indeed due to the shear term.
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These equations have been numerically integrated for times long enough to reach
a stationary state. The correlation function C2(r, φ) is then computed at different
orientations φ from F�(r) and G�(r) by using (A 1). The second-order structure
function S2(r, φ) = 2(C2(0) − C2(r, φ)) easily follows, as does the scalar spectrum
Eθ (k, φ), which is obtained by a one-dimensional Fourier transform.

The equations have been solved for various choices of the parameters. In practice, we
have fixed D and varied σ and Lf . For the boundary conditions at the origin, we have
taken F ′

0(0) = 0, G�(0) = 0 for each � and F�(0) = 0 for � > 0. The infrared boundary
condition has been fixed by setting to zero the values of all the functions F�(r) and
G�(r) beyond r = Lbox . The maximum size of the system, Lbox , has been taken much
larger than the forcing scale Lf to properly resolve the anisotropic contributions.
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